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V E R T I C A L  M O T I O N  O F  A B O D Y  O F  R E V O L U T I O N  I N  A S T R A T I F I E D  F L U I D  

I. V. S turova  UDC 532.59 

When a body moves in an inviscid fluid with a nonhomogeneous density, the effect of stratification 
on the hydrodynamic loads manifests itself through variable hydrostatic forces, additional forces caused by 
energy consumption for generation of internal gravity waves, and through the instantaneous response of the 
fluid to the external action, i.e., the response of the non-gravity fluid. Most theoretical results on motion of 
a body in an incompressible stratified fluid have been obtained within the framework of the linear theory 
of waves. The horizontal motion of a submerged body at constant velocity, when this problem is considered 
stationary, and small s teady vibrations of a body with and without uniform horizontal motion have been 
studied most thoroughly. For motion of a body in an arbitrary direction in a fluid with a variable density 
gradient, one should solve a nonstat ionary problem. At present, the studies along this line have been primary 
devoted to the vertical mot ion of a body through the interface between two media and to the particular case 
of motion of a body to the free surface of a homogeneous fluid (see [1-8]). In some papers, the generation of 
internal waves localized near the interface is called transient radiation. 

The difficulties of the exact solution of flow problems are often eliminated by an approximate simulation 
of a body by a system of mass sources and sinks taken from the theory of a homogeneous unbounded fluid. 

In this paper,  we consider the uniform vertical motion of a slender body of revolution with a density 
distribution in the form of a pycnocline. A sharp pycnocline is modeled by a two-layer fluid, and a smooth 
pycnocline is modeled by a three-layer fluid with an exponentially stratified middle layer and homogeneous 
upper and lower layers. The  body begins to move at constant velocity far from the pycnocline, crosses it, and 
moves upward by a great distance. The  problem is solved both  with and without the Boussinesq approximation. 
In the latter case, the load occurring upon motion of the body in a non-gravity fluid is determined.  The  effects 
of body shape and velocity on buoyancy forces, and the effects of pycnocline thickness and density difference 
are also studied. 

1. F i e ld  of  a P o i n t  S o u r c e .  The  small motions of an initially undisturbed,  incompressible, inviscid, 
stratified fluid in a uniform gravity field in the presence of a mass source with density p0Q(x, t) in Cartesian 
coordinates x = (z, y, z) with the z axis directed vertically upward are described by the following system of 
linear equations: 

Ou Op , 
po--~+ V p + F = O ,  "-~+Oo(Z)w=O, d i v u = O ( x , t ) .  (1.I) 

Here u = (u, v, w), p, and p are the perturbations of the velocity vector, pressure, and density, po(z) is the fluid 
density in the undis turbed state,  F = (0, 0, gp) is the density vector of the mass forces, g is the acceleration of 
gravity, the prime denotes differentiation with respect to z, and t is time. The boundary and initial conditions 
are as follows: u , p  --* 0 (Ix[ ~ oo) and u = p = 0 (t = 0). 

For an arbitrarily moving point source, we have Q(x, t) = q(t)6(x - Y(t))  [q(t) = 0 for t <~ 0], where 
is the Dirac delta function, Y( t )  = (yl(t), y2(t), ys(t)), and x = Y(t )  is the motion path of the source. 

System (1.1) can be reduced to one equation for the vertical velocity component  w(x, t): 

03 
02 [~-~(poOW) + poA2w] + poN2A2w = ~ (1.2) 
Ot~ Oz ~,~-u~ (p~ 
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Here N(z) = x/-gp~o/PO is the buoyancy frequency and A2 = 02/Oz 2 + 02/092 is the horizontal Laplac,, 
operator. The remaining quantities can be expressed in terms of w by means of the relations following from 
(1. l). In particular, the pressure calculated ignoring hydrostatic forces is equal to 

_l O Ow 
p = poA 2 -~(--~z - Q). (1.3) 

To determine the desired quantities, we perform a Fourier transform with respect to the horizontal 
variables x and y and t ime t: 

Oo ~ CO 

w,(IZ, V,z,w) = I e  i•̀  dt I e -iuz dx I e-WVw(x,t)dy. 
0 --CO --00 

Then, the Fourier transform of the vertical velocity w, is described by the equation 

(p0w' , ) '  - p0k  ~ 1 - - -  w ,  = ( p 0 G ) ' ,  k s = ~ + ~,~, (1 .4 t  

whose solution is expressed in terms of the Green function G(k, z, (,w) subject to the equation 

(poG')' - pok2(1-  ~2 )G = 6 ( z - ~ )  (1.5) 

and the boundary conditions G ---+ 0 (Izl ---* oo). Following [6], the function G can be represented as the sum 
of two terms: G(k, z, ~, w) = Go (k, z, ~) + G1 (k, z, ~, w), where Go (k, z, ~) = l i r n  G(k, z, ~, w) does not depend 
on w and is the solution of the equation 

(poGlo) ' -- pok2Go = 6(z - ~) ,  Go "-' 0 (Izl ---, o~) .  (1.6) 

The function Go defines the instantaneous part of the fluid response to the external action and describes the 
part  of the disturbance field tha t  is carried away by the  moving source and corresponds to the non-gravity 
fluid, i.e., to the zero vector of the mass forces F in (1.1). The  remaining part  Gl(k,z ,~,w) is a delayed 
response and describes the internal waves localized near the density variation levels. The  function G1 is a 
solution of the nonhomogeneous equation 

N 2 k 2 
(poCk)' - ,ook 2 (1 - ~--~-) G1 = -"~poN2Go, (1.7) 

and it vanishes as Iz[ --, oo. 
The  solution of Eq. (1.7) can be represented as an expansion in the eigenfunctions of the following 

eigenvMue problem: 

( p o W . ' ) '  - p0k2(1 - N2/ofl)Wn = O, Wn -* 0 (Izl -* o~). (1.8) 

The  spectral properties of this problem have been well s tudied (see, for example, [9]). The  spectrum 
w2(k) is positive and discrete with stable stratification N(z) >>. 0 over the entire range of depths and nonzero 
N(z) only on a finite interval. The  eigenfunctions W,t(z) are orthogonal and normalized: 

OO 

f po(z)X2(z)W2n(z ) dz = 1. (1.9) 
- - 0 0  

As a result, for G1 we have 

f . ( ~ )  = 

Here 

O0 

v, = ~ F.(~)W.(z). 
r l = l  

w2n Co 
w 2 - (w + iA) 2 f P~176 drh 

- - O O  
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where A is a small positive constant.  
Knowing the Green function, one can determine the Fourier transforms of the vertical velocity w, and 

the pressure p,,  taking into account (1.3): 

f f  OG w, = -- / q(r)exp[iwr -i(#y,(r)+ uy2(T))l[Po(( ) 
"~'-] ~----Y3(r) dr, 

0 

_Vpo(z [j~176 exp [ uzogO2G ] = _ q(r) [iw~" - i (#y , ( r )  + uy2(r))] P0(~)~---ff;, + ~(z -- ~r dr. P, 
o ~=~z(r) 

To the division of the Green function into two parts corresponds the following representation for the 
Fourier transform of the pressure: p, = p,0 +Pl .  In this case the first term p,0 describes the pressure perturbation 
in the non-gravity fluid and vanishes when the source is shut down: 

(x) 
iw 

pO = --ffffpo(z) f q( r )exp  [iwr - i (#yi ( r )  + uy2(r))]M(z, ya(r ) )dr  
(1.10) 

0 

= + 6(z - 

The second term is the wave part  of the pressure perturbat ion and does not vanish with shutdown of the 
source: 

iw ~ r 02G1 ] pl, = - - ~ p o ( z )  --[ q ( r ) e x p [ i w r -  i(/~yl(r) + uy2(r))], v.v,./Poff)~:~-;/~=,3(~) dr" 
0 

Performing the inverse Fourier transforms 
o o  o o  o o  

1 p=  sfe- 'd fe"'aufe'"b,d  
~ 0 0  - - O D  - - 0 0  

w e  have p = p0 + pl ,  where 

p0(x ,  t) = p0(z)2z. }[q(t)/d--kkJ0(kr(t))M(z, y3(t))], 
0 

p , ( x ,  t) = 

(l.il) 
oo P~ ~)]q( r /~  ~ , )/ 2)OG~_I W=( �9 r)po(y3(r))d Jo(kr(r)) c o s w n ( t -  r )Wn(z Po(T1)N (T1 '7)&l; 

0 0 n= l  __~ ~--"--Y3( r 

r(~') = [(x - y,((.))2 + (y _ y2(~.))z]l/2, and J0 is a zero-order Bessel function of the first kind. 
This solution can be somewhat simplified for a weakly stratified fluid by introduction of the Boussinesq 

approximation. In this approximation, the density difference from the constant value p, = p0(0) in the 
equations of momentum conservation is taken into account only in the terms describing buoyancy, and, in 
inertial terms, the actual density is replaced by m. 

In the Boussinesq approximation,  Eq. (1.2) takes the form 

02 03Q 
Or2 A w  + N2 A2w _ Or20 z, 

where N = k/-gffo/ps is the buoyancy frequency and A is a three-dimensional Laplace transform. In relations 
(1.3), po(z) should be replaced by Ps. Similar changes should be performed in relations (1.4)-(1.9). In this 
case, Eq. (1.6) has a simple solution that  corresponds to a homogeneous fluid: Go = -e-klz-~l /(2psk) .  After 
integration in (1.11) we obtain the following result, which is well known for an infinite homogeneous fluid: 

ps po(x, t)= ~_O(q(t)~ [r~ = r2(t) + (z - y3(t))21 . 
4~r 0t \ rl ] 
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The simplest example of a stratified fluid is a two-layer fluid consisting of layers of different density. In 
the more general case, the sharp density jump between the layers can be replaced by a layer with continuously 
varying density (three-layer fluid). Below, we use the solutions obtained for theses models of fluid stratification. 

2. T w o - L a y e r  F lu id .  In the undisturbed state, the upper layer with density pl occupies the region 
z > 0, and the lower layer with density p2 = (1 + r (~ > 0) occupies the region z < 0. The particular 
case of this fluid for ~ ~ oo is a semi-infinite homogeneous fluid with a free surface. 

Using the results of [6], we describe briefly the solution of the problem in this case. The fluid density 
in the undisturbed state is conveniently written as po(z) = ps(1 - 3' sgn z), where ps = p1(2 + ~)/2 and 
7 = ~/(2 + e). The solution of Eq. (1.6) has the form 

Go(k,z,~) = 2kp0(~) e-klz-~l - "Y sgn ~e -k(Izl+l~l) . 

The eigenvalue problem (1.8) has a unique solution, since a single wave mode exists in this fluid: W1 = 
e - k l z l / ~ ,  wl = v ~ ,  and .~ = 79- Hence, the solutions for p0 and pl in (1.11) are written as 

,o./o[ 
Po - 47r Ot q(t) + 3 ' s g n  

r2 

t oo 
O po ( z__.____)) 

sgn z / q(r)[ sgn ( y a ( r ) ) - ' ~ l d r  -- J kJo(kr)e -k(l'l+lu3(~)l) COS Wl( t -  v) dk (2.1) Pl  = 47r 
0 0 

r~ = r e + (Izl + [ya(t)l)e]. 

The velocity potentials in each layer with unsteady motion of a source in a two-layer fluid are determined 
by He et al. [10]. The pressure calculated from the velocity potentials coincides with that given in (2.1). 

8.  T h r e e - L a y e r  F l u i d .  In the undisturbed state, the continuous density distribution with constant 
values of pl in the upper layer z > H, with constant values of p2 in the lower layer z < - H ,  and with an 
exponential variation in the middle layer with thickness 2H has the form 

Pl  = Ps e -~  (Z > H), 
po(z) = p,e -"z (Izl < a ) ,  (3.1) 

p2 = P~e '~hr (z < - H ) .  

The buoyancy frequency is different from zero only in the middle layer, in which it has a value N -- vfS~. For 
convenient comparison with the results for a two-layer fluid, we indicate the relation ~ = In(1 + r 

In this case, Eq. (1.6) has constant coefficients, and its solution is conveniently written as 

{ -Wl(Z)W2(~)/D ( z>~) ,  
Go = -wl(~)w2(z) /D (z < ~), 

where wl(z) and w2(z) are two linearly independent solutions: 

e kz, e2C'If(b2e kz - ble -kz) (z > H), 
(101, 1/32) = a l  e'Ylz + a2e ~z ,  cxe ~ z  + c2e ~= (Izl < n ) ,  

ble kz + b2 e - k z ,  e kz (z < - H ) .  

Here ax = - ( k  + 72)e-H('q+k)/2#, a2 = (71 + k)e-//('t2+k)/2#, bl = o~(e -2Hv~ - e-2H'q)/4#,  b2 = e-2nk[(k + 
#)e -2H't2 +(#-k)e-2t tTl] /2#,  ca = (k-72)elf( 'q-k)/2#, c2 = ( 7 1 - - k ) e g ( ~ 2 - k ) / 2 / ~ ,  7x = c~/2+#, 72 = a / 2 - # ,  

and # = k/k 2 + ~2/4. 

The Wronskian n = po(()[Wl(()w'2(() - wi(()w2(()] does not depend on (: 

D = pske2H(u-k)[p + k + (p -- k)e-4t'tt]/i.t. 

The function M(z,  ~) in (1.10) has nine different representations, according to the layer in which the variables 
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z and ( are present: for z > H, we have 

1 f k[ble-}(~+~) + bze-t~lz-~l] 

M(z,~) = ~ I e-(kz+aH)(clTle-'r2~ + c272e-'q~) 
- kek(~_z) 

for Izl < H, 

1 

and for z < - H ,  

H), 

(Ill < H), 
(( < - H ) ,  

{ e-(kf+2aH)(clTle'q z + c272 ev2z) 

_(e -aH /k)laici,72e'riz-'r2~ + a2c2,72e'~2z-'rlf 
-k2(a2cl ea(z-f)/2-Mz-~l -k- aic2e'~(z-~)12+~'l:-~l)] 

-ek~(alTle "tiz + a272e "t2z) 

(~ > H), 

([~1 < H), 

(~ < - H ) ,  

1 f kek(Z-D-2~H (~ > H),  

M(z, ~) = "~2 I --ekz-aU(aiTie -'r2f "k a272 e -3 ' l f )  (1~1 < H),  
ble k(z+e)] - H ) .  k[b2e-klz-~l_ (~ < 

The solution of the eigenvalue problem (1.8) for this stratification is presented in detail in [9, 11]. We 
give briefly the main results. The countable system of eigenfunctions Wn(z) has the form 

e -kz (z > H),  

Wn = A -1/2 eaZ/2(Asinlqz + B c o s t q z )  ([z[ < g ) ,  (3.2) 

Ce kz (z < - H ) ,  

where 

A = c~ e-kH ['Car + = + 
t 2pl cos p i l l  ~r 

(uneven n), 
(even n); 

C = a -2 ~ (k + a/2 + plcotanpiH)/(k - a / 2  + p lco tan# lH)  

t (k + r - Pl tanp lg) / (a /2  - k + Pl tan p i g )  

a = e ~It/2, i~1 = qk2(N2/w 2 - 1) - a2/4, and the normalization factor 

B2 - A2 sin 2/~1 HI.  A = psN 2 [(A 2 + B2)H + 
2#1 . I  

The dispersion relations wn(k) are determined by solution of the equation 

tan 2pl g = 21~lw2i[k(Y 2 - 2w2)]. (3.3) 

Obviously, one of the solutions of this equation is the solution #I = 0, which corresponds to wo/N = 
2k/~/4k 2 + a 2 and is called the "zero mode" in [11]. It is possible that,  it does not make a contribution to 
the required solution only for one special value of k. For w < w0 the value of/~t becomes imaginary, and Eq. 
(3.3) has a unique solution, which describes the initial portion of the dispersion curve of the first mode for 
not large k. For w > w0, the continuation of this curve is determined by the real values of #l- 

From (3.3), we determine the behavior of dispersion relations in the limiting case of small k: 

fll = N tan H ,  fin = qc~2H2 + 7r2( n _ 1) 2 

(3.4) 

In analyzing this problem in the Boussinesq approximation, we replace the exponential density 
distribution in the middle layer of the undisturbed state of the fluid (3.1) by the following linear distribution 
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in a weakly stratified fluid: 

2/(2 + r (z > H), 

p o ( = )  = 1 -  z/H (Izl < H), 
2(1 + e)/(2 + e) (z < - H ) .  

In this case, the buoyancy frequency is also constant in the middle layer (N = k/~/ f t  ). The expressions 
for the eigenfunctions and the dispersion equation can be obtained from (3.2) and (3.3) by setting a = 0. Now 
that from the dispersion equation in the Boussinesq approximation one can determine the explicit dependence 
of the wavenumber on the frequency: 

w /2wx /N  2 -- w 2 \ 

I 
k,(w) = ~ ~ ( , ~ -  1/2) (~ = N / v ~ ) ,  

w [ / 2 w x / N 2 - w 2 ) ]  
~/N 2 - w  ~ n~" + arctan~, ~-~ -- 2~ ~ (w > g/x/~) .  

4. S l e n d e r  B o d y  of  R e v o l u t i o n .  In what follows we restrict ourselves to the case of vertical motion 
of a source of constant intensity at velocity U. It is convenient to perform a shift in time and assume that the 
moment the source intersects the coordinate origin is zero time. Then, the motion trajectory of the source is 
written as yl(t)  = y2(t) = 0, y3 = Ut, and r 2 -- x 2 + y2, and the fluid flow becomes axisymmetric. 

As is known, motion of a slender body of revolution along its own axis in an infinite homogeneous fluid 
can be modeled by motion of a system of point singularities located continuously on the body axis (see, for 
example, [2]). Suppose in the moving coordinate system Xl = x, yl = y, and zl = z - Ut, the equation of 
body surface has the form r = f ( z l ) .  The function f ( z l )  is assumed to be even and bounded together with 
the first derivative everywhere except in small vicinities of the end points, at which the derivative can have 
singularities. Let a and b denote the haft-width and half-length, respectively, of a slender body, a/b << 1. 

The system of point singularities equivalent to this body has the following distribution on the Zl axis 
in the interval [zll ~< b: q(zl, t) = -2~rUf ( z l ) f (Z l )  = - U S ' ( z l ) ,  where S = ~rf 2 is the cross-sectional area of 

the body. 
Obviously, in a stratified fluid, this approximation models a body with a time-varying shape. It is 

assumed, however, that  for weak stratification these variations are small. 
The total fluid pressure P caused by motion of this system of singularities is writ ten as 

b 

P(r, z, t) = / q(s, t) p (r, z, t, 3) ds. 
- b  

In this case, in relations (1.11) for p, one should set q(r = 1, yl = y2 = O, and ya(r = s + U~. 
After integration of the pressure over the surface, the vertical force R acting on the slender body is 

defined by 

b 

R(t) = / P( f (q) ,  71 + Ut, t)Sl(rl) &?. 
-b 

Without introduction of the Boussinesq approximation, the vertical force is the sum of two terms. 
R = R0 + R1, the first of which corresponds to motion of the body in a non-gravity fluid, and the second 

describes wave action. 
In the Boussinesq approximation, the vertical force is determined only by the wave component of the 

pressure pl of the point source, since, in an ideal infinite homogeneous fluid, the body drag for translation 
motion is equal to zero (d 'Alembert 's  paradox). 

The final expressions for the vertical force acting on a slender body moving in a two-layer fluid have 
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the form 
b b b 

R o = - 4 - -  ~- po(tl+Ut)S'(rl)d, 1 [ f 2 ~ - ~ ) - + ~ - ~ - - ~ 3 / 2 -  7 p(rl+Ut)sgn(,7+Ut)S'(q)d,I 
-b -b -b 

b 
x f (I,7 + utl + + utl) } 

-b [f2(r}) + (I)7+ Utl + l( + Utl)2] 3/2 sgn (( + UtlS'(()d( ; 

b b 

= - 4--; po(Ut + ,7) sgn (,j + Ut)S'(~) d,7 S'(() d( 
-b -b 

t oo 

x / [sgn(( + Ur)-7]d, / kJo(kf(rl))e-k(le+utl+tr r)dk. (4.2) 

- - ~  0 

In a three-layer fluid without  Boussinesq approximation, 

- b  - b  0 

UN2~I i } ] R,  = 2~ ;o(,1 + wt)s'( ,7) d,7 s ' ( O  d~ ;o( (  + Wr) d~- 

o o  

x f d-~So(kf(~))w~On(r + Ur)W~(, + Ut)coswn(t- r) (4.4) 
o 

H 

OM(z,~) po(s) OG~'~) W,I(s) ds] , / 
- H  

In the Boussinesq approximation,  relation (4.4) for the wave component  of the vertical force is somewhat 
simplified: 

R,=  4~ S'(~ld~ S'(Odr ~ j g ~ .~ . t~+  + 
n = l  - b  - b  - c o  0 

H 

x coswn(t- 7")dk [~1.(~) = / e-kls-'l sgn (s-,)Wn(s)ds]. (4.5) 

-E 
Note that  [12] the energy losses due to the radiation of internal gravity waves by a given point source 

of mass was determined in [12] using the Boussinesq approximation.  From these results we can also calculate 
the vertical fluid response caused by a distr ibuted source, and for the problem considered we obtain 

n , -  2. S'(rl)d,7 S'(~)d( dr w,,  , +Ur)W:(q+Ut)cosw.(t-r)dk. (4.6) 
= - - b  - o o  0 

For a slender body, the Bessel function in (4.4) and (4.5) can be considered approximately equal to 1. The 
numerical calculations below are performed in the same approximation.  It is not hard to show that,  for the 
fluid stratification studied, expressions (4.5) and (4.6) are identically equal. 

5. N u m e r i c a l  R e s u l t s .  For specific calculations we chose bodies of three shapes with different degrees 
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of sharpness at the end points: 

{ (Bt), 
f ( z l )  = a cos(~rzl/2b) (B2), (5.1) 

(1 + cos(lrzl/b))/2 (S3). 

Spheroid B1 is a blunt body, body B2 has an acute apex angle, and body B3 has zero apex angle. The volumes 
of these bodies at constant values of a and b are related to one another as 1:3/4:9/16.  In the calculations we 
assumed that a/b = 0.1. 

The choice of body shape in the form of (5.1) yields simple density distribution models. In addition it 
allows one to perform analytically some integrations in (4.2), (4.4), and (4.5) and reduce these expressions to 
double integrals: with respect to r / and  k in (4.2) and with respect to k and r in (4.4) and (4.5). 

The vertical force /~0 = Rob2/(psa4U2) calculated by integration of (4.1) and (4.3) is shown as a 
function of c = Ut/b in Figs. l a -c  for bodies B1, B2, and B3, respectively, in a two- or three-layer fluid for 
e = 0.03. Curves 1 correspond to a two-layer fluid, and curves 2-4 to a three-layer fluid with thicknesses of the 
middle layer H/b = 0.2, 0.5, and 1.5. As noted by Porfir'ev [5], in studies of motion of a body to a free surface 
of a homogeneous fluid, the vertical force in a non-gravity fluid is always directed upward. Exact use of (4.1) 
for a blunt body B1 always leads to an infinite value of R0 for IUt/b{ = 1 (see, for example, [5]). To eliminate 
this feature in the calculations for body B1, the mass sources were distributed not over the entire interval 
Izx[ ~ b, but only between the foci of the ellipse [zl] ~< v / ~  - a 2, by analogy with the well-known solution on 
modeling a spheroid in the axial flow of a distribution of dipoles [13]. Obviously, for a thin stratified layer, the 
behavior of the vertical force is similar to that in the case of a two-layer fluid. With increase in the pycnocline 
thickness, the maximum value of the vertical force decreases. 

A comparison of the total vertical force /~ = Rb/(ps~a 4) determined from (4.1) and (4.2) with that 
arising in a non-gravity fluid for body B2 is shown in Figs. 2 and 3 for e = 0.03 and 0.3, respectively. Figures 
2a-c, and 3a-c are given for Froude numbers Fr = U/~/~ = 0.5, I, and 2. The solid curves in Figs. 2 
and 3 show the total force/~, and the dashed curve shows an analogous dimensionless complex for the wave 
component of the vertical force. The total work expended for wave generation in the vertical motion of a body 
in a two-layer fluid is determined by Warren [2]. According to [2], for bodies of various shapes, the wave losses 
are maximal for Fr ,-~ 1. These conclusions are supported by comparison of the maximum values of the wave 
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component of the force in Figs. 2 and 3. The body drag in a non-gravity Fluid is proportional to Fr 2. Hence, 
it can be concluded that, for high body velocities, the weight of the Fluid has an insignificant effect, and, for 
Fr ,-, 1, it dominates. For low velocities (Fr << 1), the effect of both factors axe small. A comparison of Figs. 2 
and 3 shows that the effects of the density difference in the dimensionless variables used is most marked for 
the non-gravity component of the vertical force, and the wave component changes only slightly. 

The wave load for a three-layer fluid, z~l = R1/(psa4N2), calculated in the Boussinesq approximation 
using (4.5) or, what is the same, (4.6) is shown in Fig. 4a-c for body B1 for ~ = 0.03, Fr = 1 and thicknesses of 
the middle layer H/b = 0.2, 0.5, and 1.5, respectively. In this problem,the contribution of various modes is of 
interest. In the calculations, 20 modes were considered (curves 1). In the case of a thin pycnocline (H/b = 0.2), 
the total load is determined primarily by the first mode (curves 2), and the contribution of the subsequent 
modes is small. With an increase in the pycnocline thickness, the contributions of higher modes increase. 
Figure 4c shows, along with the contributions of the first mode, the sum of the first five modes (curve 3). 
Evidently, the wave load for the pycnocline thicknesses considered is determined primarily by lower modes. 

Figure 5 shows the effect of the body shape on the wave component of the vertical force calculated 
for ~ = 0.03, H/b = 1.5, and Fr = 1 in the Boussinesq approximation. Curves 1 and 2 correspond to bodies 
B2 and B3, respectively (similar results for body B1 are shown in Fig. 4c). Evidently, the maxima of the 
magnitudes of the wave force are approximately proportional to the volumes of these bodies. 

Determination of the wave component of the vertical load without introducing the Boussinesq 
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approximation is quite laborious. However, the results of the numerical integration of (4.,1) indicate tha~ 
the wave loads determined with and without the Boussinesq approximation practically coincide for relativeh 
small values of the density difference between the upper and lower layers (s ~< 0.3). This fact could have been 
predicted by comparing the maximum phase velocities of the internal wave in the Boussinesq approximation 
and without it. According to (3.4), the relative difference between the maximum phase velocities does nol 
exceed 1% in the indicated range of s. The difference between the wave forces calculated using (4.4) and (4.5) 
did not exceed the indicated value. 

The numerical results presented allow one to estimate the effect of a smooth pycnocline on various 
components of the vertical force acting on a moving body. 

The results considered can be used in studies of body motion in an arbitrary path in a stratified fluid. 
and also in developing a numerical method of boundary elements for determining the pressure on the body 
surface with exact satisfaction of the nonpenetration condition. 

This work was partially supported by the International Science Foundation and the Government of 
Russia (Grant JHX 100). 
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